skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kawasaki, Jason_K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The synthesis of functional graphene nanostructures on Ge(001) provides an attractive route toward integrating graphene-based electronic devices onto complementary metal oxide semiconductor-compatible platforms. In this study, we leverage the phenomenon of the anisotropic growth of graphene nanoribbons from rationally placed graphene nanoseeds and their rotational self-alignment during chemical vapor deposition to synthesize mesoscale graphene nanomeshes over areas spanning several hundred square micrometers. Lithographically patterned nanoseeds are defined on a Ge(001) surface at pitches ranging from 50 to 100 nm, which serve as starting sites for subsequent nanoribbon growth. Rotational self-alignment of the nanoseeds followed by anisotropic growth kinetics causes the resulting nanoribbons to be oriented along each of the equivalent, orthogonal Ge⟨110⟩ directions with equal probability. As the nanoribbons grow, they fuse, creating a continuous nanomesh. In contrast to nanomesh synthesis via top-down approaches, this technique yields nanomeshes with atomically faceted edges and covalently bonded junctions, which are important for maximizing charge transport properties. Additionally, we simulate the electrical characteristics of nanomeshes synthesized from different initial nanoseed-sizes, size-polydispersities, pitches, and device channel lengths to identify a parameter-space for acceptable on/off ratios and on-conductance in semiconductor electronics. The simulations show that decreasing seed diameter and pitch are critical to increasing nanomesh on/off ratio and on-conductance, respectively. With further refinements in lithography, nanomeshes obtained via seeded synthesis and anisotropic growth are likely to have superior electronic properties with tremendous potential in a multitude of applications, such as radio frequency communications, sensing, thin-film electronics, and plasmonics. 
    more » « less
  2. Heusler compounds, in both cubic and hexagonal polymorphs, exhibit a remarkable range of electronic, magnetic, elastic, and topological properties, rivaling that of the transition metal oxides. To date, research on these quantum materials has focused primarily on bulk magnetic and thermoelectric properties or on applications in spintronics. More broadly, however, Heuslers provide a platform for discovery and manipulation of emergent properties at well-defined crystalline interfaces. Here, motivated by advances in the epitaxial growth of layered Heusler heterostructures, I present a vision for Heusler interfaces, focusing on the frontiers and challenges that lie beyond spintronics. The ability to grow these materials epitaxially on technologically important semiconductor substrates, such as GaAs, Ge, and Si, provides a direct path for their integration with modern electronics. Further advances will require new methods to control the stoichiometry and defects to “electronic grade” quality and to control the interface abruptness and ordering at the atomic scale. 
    more » « less
  3. Polar metals are an intriguing class of materials that simultaneously host free carriers and polar structural distortions. Despite the name “polar metal,” however, most well-studied polar metals are poor electrical conductors. Here, we demonstrate the molecular beam epitaxial growth of LaPtSb and LaAuGe, two polar metal compounds whose electrical resistivity is an order of magnitude lower than the well studied oxide polar metals. These materials belong to a broad family of ABC intermetallics adopting the stuffed wurtzite structure, also known as hexagonal Heusler compounds. Scanning transmission electron microscopy reveals a polar structure with unidirectionally buckled BC (PtSb and AuGe) planes. Magnetotransport measurements demonstrate good metallic behavior with low residual resistivity (ρLaAuGe = 59.05 μΩ cm and ρLaAPtSb = 27.81 μΩ cm at 2 K) and high carrier density (nh ∼ 1021 cm−3). Photoemission spectroscopy measurements confirm the band metallicity and are in quantitative agreement with density functional theory (DFT) calculations. Through DFT-chemical pressure and crystal orbital Hamilton population analyses, the atomic packing factor is found to support the polar buckling of the structure although the degree of direct interlayer B–C bonding is limited by repulsion at the A–C contacts. When combined with predicted ferroelectric hexagonal Heuslers, these materials provide a new platform for fully epitaxial, multiferroic heterostructures. 
    more » « less